[转贴]接地的概念-专题讲座001

发表于2005-07-17     4181人浏览     22人跟帖     总热度:10  

扫码加入筑龙学社  ·  电气工程微信群 为您优选精品资料,扫码免费领取
分享至

分享到微信朋友圈 ×

打开微信"扫一扫",扫描上方二维码
请点击右上角按钮 ,选择 

 发表于2005-07-17   |  只看该作者      

2

为了正确地进行接地工作,首先必须明确“地”和“接地”的概念以及有关的主要名词术语,并 了解接地在防止人身遭受电击、减少财产损失和保证电力系统正常运行中的作用。
--------------------------------------------------------------------------------
一、“地”和“接地”的概念
--------------------------------------------------------------------------------
          1.地
          2.接地
          3.接触电压
          4.跨步电压
          5.流散电阻、接地电阻和冲击接地电阻
--------------------------------------------------------------------------------

 发表于2005-07-17   |  只看该作者      

3

1.地
  (1)电气地 大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而 且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。这种“地”是 “电气地”,并不等干“地理地”,但却包含在“地理地”之中。“电气地”的范围随着大地结 构的组成和大地与带电体接触的情况而定。
  (2)地电位 与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆 钢或角钢,也可采用铜棒或铜板。图 1示出圆钢接地极。当流入地中的电流I通过接地极向大地作 半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距 接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。试验证明:在距单根接地极或 碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压 降。换句话说,该处的电位已近于零。这电位等于零的“电气地”称为”地电位”。若接地极不 是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。图 1中的流散区是指电流 通过接地极向大地流散时产生明显电位梯度的土壤范围。地电位是指流散区以外的土壤区域。在 接地极分布很密的地方,很难存在电位等于零的电气地。
(3)逻辑地 电子设备中各级电路电流的传输、信息转换要求有一个参考的电位,这个电位 还可防止外界电磁场信号的侵入,常称这个电位为“逻辑地”。这个“地”不一定是“地理 地”,可能是电子设备的金属机壳、底座、印刷电路板上的地线或建筑物内的总接地端子、接地 干线等;逻辑地可与大地接触,也可不接触,而“电气地”必须与大地接触。

 发表于2005-07-17   |  只看该作者      

4

2.接地
  将电力系统或电气装置的某一部分经接地线连接到接地极称为“接地”。“电气装置”是一 定空间中若干相互连接的电气设备的组合。“电气设备”是发电、变电、输电、配电或用电的任 何设备,例如电机、变压器、电器、测量仪表、保护装置、布线材料等。电力系统中接地的一点 一般是中性点,也可能是相线上某一点。电气装置的接地部分则为外露导电部分。“外露导电部 分”为电气装置中能被触及的导电部分,它在正常时不带电,但在故障情况下可能带电,一般指 金属外壳。有时为了安全保护的需要,将装置外导电部分与接地线相连进行接地。“装置外导电 部分”也可称为外部导电部分,不属于电气装置,一般是水、暖、煤气、空调的金属管道以及建 筑物的金属结构。外部导电部分可能引入电位,一般是地电位。接地线是连接到接地极的导线。
接地装置是接地极与接地线的总称。
  超过额定电流的任何电流称为过电流。在正常情况下的不同电位点间,由于阻抗可忽略不计 的故障产生的过电流称为短路电流,例如相线和中性线间产生金属性短路所产生的电流称为单相 短路电流。由绝缘损坏而产生的电流称为故障电流,流入大地的故障电流称为接地故障电流。当 电气设备的外壳接地,且其绝缘损坏,相线与金属外壳接触时称为“碰壳”,所产生的电流称为 “碰壳电流”。

 发表于2005-07-17   |  只看该作者      

5

3.接触电压
  在图 2 中,当电气装置M绝缘损坏碰壳短路时,流经接地极的短路电流为 Id 。如接地极的 地电阻力 Rd ,则在接地极处产生的对地电压 Ud = Id・Rd ,通常称 Ud为故障电压,相应的 电位分布曲线为图 2 中的曲线 C 。一般情况下,接地线的阻抗可不计,则M上所呈现的电位即 为 Ud 。当人在流散区内时,由曲线 C 可知人所处的地电位为 Uφ 。此时如人接触M,由接触所 产生的故障电压 Ut = Ud -Uφ 。人站立在地上,而一只脚的鞋、袜和地面电阻为 Rp,当人接触M 时.两只脚为并联,其综合电阻为 Rp/2 。在 Ut的作用下,Rp/2 与人体电阻RB串联,则流经 人体的电流 IB = Uf/(RB+Rp/2),人体所承受的电压 Ut = IB・RB = Uf ・RB/(RB+Rp/ 2)。这种当电气装置绝缘损坏时,触及电气装置的手和触及地面的双脚之间所出现的接触电压Ut 与M和接地极间的距离有关。由图 2 可见,当 M 越靠近接地极,Uφ 越大,则 Uf 越小,相应地Ut 也越小。当人在流散区范围以外,则 Uφ = 0,此时 Uf = Ud,Ut = Ud・RB/(RB+Rp /2),Ut为最大值。由于在流散区内人所站立的位置与 Uφ 有关,通常以站立在离电气装置水平方 向 0.8m 和手接触电气装置垂直方向 1.8m 的条件计算接触电压。如电气装置在流散区以外,计 算接触电压 Ut 时就不必考虑上述水平和垂直距离。

 发表于2005-07-17   |  只看该作者      

6

4.跨步电压
  人行走在流散区内,由图 2 的曲线 C 可见,一只脚的电位为 Uφ1 ,另一只脚的电位为 Uφ2 ,则由于跨步所产生的故障电压 Uk = Uφ1 - Uφ2 。在Uk 的作用下,人体电流 IB从人体的一 只脚的电阻 Rp ,流过人体电阻 RB ,再流经另一只脚的电阻 Rp ,则人体电流 IB = Uk/(RB 十2Rp)。此时人体所承受的电压 Ut = IB・RB = Uk・RB/RB+2p) 。这种当电气装置绝缘损 坏时,在流散区内跨步的条件下,人体所承受的电压 Uk为跨步电压。一般人的步距约为 0.8m,因此跨步电压 Uk以地面上 0.8m 水平距离间的电位差为条件来计算。由图 2 可见,当人越靠近 接地极,Uφ1 越大。当一只脚在接地极上时 Uφ1 = Ud ,此时跨步所产生的故障电压 Uk为最大 值,即图 2 中的 Ukm,相应地跨步电压值也是最大值。反之,人越远离接地极,则跨步电压越 小。当人在流散区以外时,Uφ1 和 U φ2 都等于零,则 Uk = 0 ,不再呈现跨步电压。

 发表于2005-07-17   |  只看该作者      

7

5.流散电阻、接地电阻和冲击接地电阻
  接地极的对地电压与经接地极流入地中的接地电流之比,称为流散电阻。
  电气设备接地部分的对地电压与接地电流之比,称为接地装置的接地电阻,即等于接地线的 电阻与流散电阻之和。一般因为接地线的电阻甚小,可以略去不计,因此,可认为接地电阻等于流散电阻。
  为了降低接地电阻,往往用多根的单一接地极以金属体并联连接而组成复合接地极或接地极 组。由于各处单一接地极埋置的距离往往等于单一接地极长度而远小于 40m,此时,电流流入各 单一接地极时,将受到相互的限制,而妨碍电流的流散。换句话说,即等于增加各单一接地极的 电阻。这种影响电流流散的现象,称为屏蔽作用,如图 3所示。
  由于屏蔽作用,接地极组的流散电阻,并不等于各单一接地极流散电阻的并联值。此时,接 地极组的流散电阻
Rd = Rd1/(n・η)   (1)
式中:Rd1──单一接地极的流散电阻
   n ──单一接地极的根数
   η ──接地极的利用系数,它与接地极的形状、单一接地极的根数和位置有关
  以上所谈的接地电阻,系指在低频、电流密度不大的情况下测得的,或用稳态公式计算得出的电阻值。这与雷击时引入雷电流用的接地装置的工作状态是大不相同的。由于雷电流是个非常 强大的冲击波,其幅度往往大到几万甚至几十万安的数值。这样,使流过接地装置的电流密度增 大,并受到由于电流冲击特性而产生电感的影响,此时接地电阻称为冲击接地电阻,也可简称冲 击电阻。
  由于流过接地装置电流密度的增大,以致土壤中的气隙、接地极与土壤间的气层等处发生火 花放电现象,这就使土壤的电阻率变小和土壤与接地极间的接触面积增大。结果,相当于加大接 地极的尺寸,降低了冲击电阻值。
  长度较长的带形接地装置,由干电感的作用,当超过一定长度时,冲击电阻不再减少,这个 极限长度称为有效长度、土壤电阻率越小,雷电流波头越短,则有效长度越短。
  由于各种因素的影响,引入雷电流时接地装置的冲击电阻,乃是时间的函数。接地装置中雷 电流增长至幅值IM的时间,是滞后于接地装置的电位达到其最大值 UM 的时间的。但在工程中已 知冲击电流的幅值IM和冲击电阻 Rds的条件下,计算冲击电流通过接地极流散时的冲击电压幅值 UM = IM・Rds 。由于实际上电位与电流的最大值发生于不同时间,所以这样计算的幅值常常比实 际出现的幅值大一些,是偏于安全的,因此在实际中还是适用的。

 发表于2005-07-17   |  只看该作者      

8

二、接地的作用
        (一)防止人身遭受电击
           1.电击机理
           2.电击效应
           3.直接电击的防护措施
           4.间接电击的防护措施
           5.防止直接和间接电击两者的措施
           6.防止电击的接地方法
        (二)保障电气系统正常运行
        (三)防止雷击和静电的危害
-------------------------------------------------------------------------

 发表于2005-07-17   |  只看该作者      

9

 接地的作用主要是防止人身遭受电击、设备和线路遭受损坏、预防火灾和防止雷击、防止静 电损害和保障电力系统正常运行。现分别说明如下。
(一)防止人身遭受电击
  1.电击机理
  电击所产生的电击电流通过人体或动物躯体将产生病理性生理效应,例如肌肉收缩、呼吸困 难、血压升高、形成心脏兴奋波、心房纤维性颤动及无心室纤维性颤动的短暂心脏停跳、心室纤 维性颤动,直至死亡,所以必须采取防护措施。
  人或家畜触及电气设备的带电部分,称为直接接触。人或家畜与故障下带电的金属外壳接 触,称为间接接触。直接接触及间接接触所造成的电击称为直接电击和间接电击。为了防止电 击,必须先了解电击机理,然后对直接电击、间接电击以及兼有该两者电击采取适当的防护措 施,以保证人、畜及设备的安全。
  (1)人体阻抗的组成 电击电流大小由接触电压和人体阻抗所决定。人体阻抗主要与电流路 径、皮肤潮湿程度、接触电压、电流持续时间、接触面积、接触压力、温度以及频率等有关。人 体阻抗的组成如图 4所示。如将两个电极接触人体的两个部分,并将电极下的皮肤去掉,则该两 电极问的阻抗为人体内阻抗 Zi。皮肤上电极与皮肤下导电组织之间的阻抗即为皮肤阻抗 ZPl和 ZP2 。Zi、ZP1、ZP2的矢量和为人体总阻抗 ZT。现将这些阻抗的特征说明如下:
  ①人体内阻抗 Zi 根据IEC测定的结果,Zi主要是电阻,只有少量电容,如图 4中虚线所 示,其数值主要决定于电流路径,一般与接触面积关系不大,但当接触面积小到几平方毫米数量 级时,内阻抗才增大。
  ②皮肤阻抗 ZP1、ZP2  ZP1、ZP2是由半绝缘层和小的导电元件(如毛孔构成的电阻电容网 络)组成,见图 4。接触电压在 50V 及以下时,皮肤阻抗值随表面接触面积、温度、呼吸等显著 变化;50~100V 时,皮肤阻抗降低很多;频率增高时,皮肤阻抗也随之降低;皮肤破损时,皮肤阻抗可忽略不计。
  ③人体总阻抗 ZT ZT由电阻分量及电容分量组成。当接触电压在 500V 及以下时,ZT值主要 决定于皮肤阻抗值;接触电压越高,ZT与皮肤阻抗关系越少;当皮肤破损后,ZT值接近于人体内 阻抗。
  ④人体初始电阻 Ri 在接触电压出现的瞬间,人体的电容还未充电,皮肤阻抗可忽略不计, 这时的电阻值称为人体初始电阻。该值限制短时脉冲电流峰值。当电流路径从手到手或手到脚而 且接触面积较大时,5% 分布秩(即 5% 的人所呈现的最小初始电阻值)Z5% 可认为等于 500 Ω。
图4 人体阻抗的组成  
  (2)人体阻抗与接触状况的关系 通常划分为以下三类:
  ① 状况 1 干燥或湿润的区域、干燥的皮肤、高电阻的地面,此时人体阻抗值:
    Z1=1000 + 0.5Z5% (Ω)
式中:1000──鞋袜和地面两者电阻的随机值,Ω
    0.5──考虑了双手至双脚的双重接触情况
    Z5%──5% 分布秩,即 5% 的人呈现此最小阻抗值,Ω
  ② 状况 2 潮湿的区域、潮湿的皮肤、低电阻的地面,此时人体阻抗值:
    Z2 = 200 = 200 +0.55% (Ω)
式中;200──较低的地面电阻值,不计鞋袜的电阻,Ω
  ③ 状况 3 浸入水中的情况,此时皮肤电阻、环境介质的电阻可忽略不计。
  在各种状况下的安全电压值,各国规定不尽相同,如表 1所示。
  表1 为交流电流的安全电压,IEC 规定直流(无纹波)的安全电压为:在状况 1,不大于120V;在状况 2,不大于 60V。安全电压包括接地系统的相对地或极对地电压,或不接地和非有效接地的相间及极间电压。
  2.电击效应
  (1)交流电流的电击效应 IEC 经过多年的试验研究,认为心室纤维性颤动是电击致死的主 要原因。一个心动周期如图 5所示,由产生兴奋期 P、兴奋扩展期 R 和兴奋复原期T所组成。图5 中的数字表示兴奋传播的顺序。在兴奋复原期内有一个相对较小的部份称为易损期,在易损期 内,心肌纤维处于兴奋的不均匀状态,如果受到足够幅度电流的刺激,心室纤维发生颤动,如图 6中 X 点受电流刺激.对心电图和血压的影响,如图 6中曲线所示。此时发生心室纤维性颤动和 血压降低,如电流足够大将导致死亡。
  当电流流过人体时,人身所察觉到的最小电流值称为感觉阈值。对于 15 ~100Hz 交流电 流,此值为 0.5mA。人握电极能摆脱的电流最大值称为摆脱电流,对于 15~100Hz 交流电流为 10mA。当流过人体的电流继续增加时,人体电流 IB和电流流过的持续时间 t 的关系如图 7所 示。图7是按电流流过人体的路径从左手到双脚的效应绘制的。当电流为 500mA、时间为 100ms 时,产生心室纤维性颤动的几率为 14%。图 7中的 Ⅰ 区通常无反应性效应;Ⅱ 区通常无有害 的生理效应;Ⅲ 区通常无器官性损伤,但可能出现肌肉收缩和呼吸困难.在心脏中形成兴奋波和 传导的可逆性紊乱,包括心房纤维性颤动及短暂心脏停跳;在 Ⅳ区内.开始出现心室纤维性颤 动,到曲线 c1,几率为 5%;到曲线 c2,几率为 50%;曲线 c3 以外则几率超过 50%。随着电流与时间的增加,可能发生心脏停跳、呼吸停止及严重烧伤。
 图 7中的

 发表于2005-07-17   |  只看该作者      

10

在工业企业和民用建筑中,有不少电气设备的使用频率超过 100Hz,例如有些电动工具和电焊 机,可用到 450Hz;电疗设备大多数使用 4000~5000Hz;开关方式供电的设备则为 20kHz ~ 1MHz;微波及无线电设备还有使用更高的频率的。对于这些 100Hz 以上交流电流,人体皮肤的阻 抗,在数十伏数量级的接触电压下,大致与频率成反比,例如 500Hz 时皮肤阻抗,仅约为 50Hz 时皮肤阻抗的 1/10,在很多情况下,皮肤的阻抗可以忽略不计。但因为是高频电流,对人体的 感觉和对心脏的影响都比 100Hz 以下交流电小。为了与 50Hz 时阈值相比,常采用频率系数 Ff 来衡量、频率系数 Ff 为频率f时产生相应生理效应的阈值电流与 50Hz 的阈值电流之比。在频 率为 100Hz 以上直至 1000Hz 时,感觉阈值的频率系数和摆脱阈值的频率系数见图 8;电击持续 时间长于心动周期并以纵向电流流经人体躯干时,心室纤维性颤动阈值的频率系数见图 9。电击 持续时间小于心动周期时,尚无试验数据。频率在 1000Hz 以上直到 10000Hz 交流电的感觉阈值 的频率系数和摆脱阈值的频率系数见图 10;心室纤维性颤动阈值的频率系数,IEC 还在考虑中。
频率在 10kHz 及 100Hz 之间时,阈值大致由 10mA 上升到 100mA(有效值),频率在 100kHz 以上及电流强度在数百毫安数量级时,较低频率时有针刺的感觉,频率再高则有温暖的感觉。频 率在 100kHz 以上时,既没有摆脱阈值和心室纤维性颤动阈值的试验数据.也没有这方面的事故 报告。频率在 100kHz 以上及电流在安培数量级时,可能出现烧伤,烧伤的严重程度随电流流通 的持续时间而定。

linjianming

陕西 汉中 | 建筑电气

999+ 关注

999+ 粉丝

999+ 发帖

717 荣誉分

该博主未添加简介

猜你爱看

添加简介及二维码

简介

还可输入70字

二维码(建议尺寸80*80)

发站内信息

还可输入140字
恭喜您已成功认证筑龙E会员 点击“下载附件”即可
分享
入群
扫码入群
马上领取免费资料包
2/20